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SUMMARY

In this paper, a projection method is presented for solving the �ow problems in domains with moving
boundaries. In order to track the movement of the domain boundaries, arbitrary-Lagrangian–Eulerian
(ALE) co-ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co-
ordinates are solved by using a projection method developed in this paper. This projection method is
based on the Bell’s Godunov-projection method. However, substantial changes are made so that this
algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi-block
structured grids are used to discretize the �ow domains. The grid velocity is not explicitly computed;
instead the volume change is used to account for the e�ect of grid movement. A new method is also
proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL)
can be satis�ed exactly in this algorithm. This projection method is also parallelized so that the state
of the art high performance computers can be used to match the computation cost associated with the
moving grid calculations. Several test cases are solved to verify the performance of this moving-grid
projection method. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: ALE co-ordinate; projection method; moving boundary; moving grid; unsteady incomp-
ressible �ow; parallel computation

1. INTRODUCTION

Flow problems with moving boundaries can be encountered in a variety of applications. Typ-
ical ones include free surface induced �ow, phase change and �uid–structure (or solid) in-
teractions. In these problems, the �ow domain is unsteady and so are the applied boundary
conditions. It is well known that the solution of �uid �ow can be best accomplished by using
boundary-conforming co-ordinate transformation. Generally, it is also desired to use boundary-
conforming co-ordinate transformation to facilitate the interface tracking. Therefore, the non-
Eulerian co-ordinate system has to be applied to exactly represent the moving boundaries of
the �uid domain so that accurate solutions can be obtained. The non-Eulerian co-ordinate
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system can also be applied on the adaptive grid calculations, where the accuracy of the �ow
solution can be improved without increase of grid density. However, it is not necessary to
use moving grid during grid adapting for steady-�ow calculation, where the iterative solution
procedure can continue without taking into account the change of grid position. For unsteady
�ow, the movement of grid points has to be properly represented in the numerical algorithms.
Owing to the movement of co-ordinate system, an additional conservation equation results

relating the change of elementary control volume to the co-ordinate frame velocity. This
relation was named by Thomas et al. [1] as the geometric conservation law (GCL). This con-
servation equation must be satis�ed simultaneously with other conservation equations, such as
mass, momentum and other quantities of �uid �ow in solving the moving boundary problem.
A good review regarding the moving grid can be found in Reference [2], where the GCL for
both static and dynamic meshes was identi�ed in detail as the surface and volume conserva-
tion law, respectively. The surface conservation law ensures that the control volume is closed
by its surfaces and volume conservation law guarantees the conservation of volume change
for the moving grid. It has been demonstrated in Reference [3] that an arti�cial mass source
would be introduced if the system fails to satisfy the GCL.
Some work has been presented in the literature to simulate �ows with moving boundaries.

Shyy et al. [4] solved a two-dimensional phase change problem on moving structured grid
where the GCL was enforced by solving the transport equation of the Jacobian. Demird�zi�c
et al. [5] used an SIMPLE-like method to simulate the �ow in a channel with moving
indentation. In his method, the grid velocity was carefully designed in order to satisfy the
GCL. Zhang et al. [2] followed this approach to develop the formula for evaluating the
grid velocity (volume change) for both the two- and three-dimensional problems. They also
presented and analysed the general �nite di�erence and �nite volume formulations for the
moving grid calculation. However, only the tetrahedron cell was used in their formulation
for three-dimensional problem. Obayashi [6] analysed freestream capturing metrics on moving
co-ordinates for both the �nite volume and �nite di�erence formulation, where the Vinokur’s
formula [7] was used to calculate the value of the metrics. However, the author found that
this formula did not satisfy the GCL exactly.
Bell et al. [8] proposed a Godunov-projection method for solving the unsteady incompress-

ible �ows. The cell Reynolds number restriction was removed or enlarged in this method.
Subsequently, this method was developed and studied by other researchers. Lai et al. [9]
used this method to simulate zero Mach number combustion and Bell et al. [10] extended
it to solve incompressible variable density problems. Brown et al. [10] studied the e�ect of
coarse grids on this method. Almgren et al. [12] suggested using the approximate projection
instead of exact projection to allow use of a fast linear solver. Pan et al. [13] applied this
method on overlapping grids and parallelized this algorithm. Trebotich et al. [14] made an
attempt to extend the Godunov-projection method for solving a speci�ed two-dimensional in-
compressible �ow with moving boundaries. In their method, the velocity is divided into two
components, potential and vortical components, in order to eliminate the inhomogeneities in
the incompressibility constraint introduced by the presence of moving boundaries. However,
the Poisson equation has to be solved �ve times in a single time step.
In this work, an attempt is made to solve the moving boundary problem on a general three-

dimensional computational domain by extending the Bell’s Godunov-projection method so that
the advantages of the Godunov-projection method can be retained. The general formulation of
the unsteady viscous incompressible Navier–Stokes equations on the arbitrary-Langrangian–
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Eulerian (ALE) co-ordinate system is presented �rst. Then the freestream capturing metrics
are examined and a formula for computing the Jacobian is proposed so that the volume
conservation law can be guaranteed. The moving grid projection method is presented to solve
the ALE formulation of incompressible �ow. The parallel algorithm based on the grid partition
is also presented and implemented in a general three-dimensional code. Several test cases are
solved to demonstrate the capability of this method.

2. GOVERNING EQUATIONS

The governing equations for the unsteady incompressible �ow on the ALE co-ordinate system
can be categorized into conservation laws for several quantities, such as surface, volume,
mass, momentum and so on. After mapping the physical space into the computational space,
the governing equations in the computational space can be written as follows:

• surface conservation law:
@
@�j (S

j·a)=0 (1)

• volume conservation law:
@J
@t
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j·ub)=0 (2)

• mass conservation law:
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• momentum conservation law:
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Here ^=(�0; �1; �2)T denotes the computational co-ordinates and x=(x0; x1; x2)T denotes the
Cartesian co-ordinates in the physical space. Sj=∇�j and J =det(�), where � is the map-
ping between the physical and computational space. a is the arbitrary constant vector and u is
the �ow velocity. ub is the co-ordinate velocity or grid velocity. The pressure is represented
by p and F denotes the source term. � is the kinematic viscosity. The conservation laws for
other �uid quantities, such as temperature and concentration, take similar forms. In the ALE
formulations, the convection velocity should be the relative velocity (u − ub) instead of �ow
velocity u and the time derivative is computed on the computational space, such as @J=@t|�
and @u=@t|�. It can be easily observed that the conventional Navier–Stokes equation can be
recovered in case of ub=0. It is veri�ed that after applying Equation (2) in Equation (4),
the conventional Navier–Stokes equation can also be recovered. In order to simplify the for-
mulation, we use �� and ∇� denote the Laplacian and gradient operator in the computational
space, respectively, from now on.
The initial and boundary conditions are application-speci�c. For di�erent �ow calculations,

the appropriate initial and boundary conditions have to be determined so that the numerical
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calculation can be initiated. It should be pointed out that it is not straightforward to specify
the divergence-free initial velocity �eld and it is even harder to decide the initial pressure
distribution. For the boundary conditions, either Dirichlet or Neumann-type condition, can be
prescribed on the domain boundaries.
Bell et al. [8, 15] proposed the Godunov-projection method, which has been successfully ap-

plied to solve the unsteady incompressible Navier–Stokes equations on a Eulerian co-ordinate
system. Various kinds of �ow problems have been addressed by using this method, such as
variable density �ow and zero Mach number combustion. In this paper, an attempt is made
to extend this method so that the Navier–Stokes equations on the non-Eulerian co-ordinate
system, Equations (3) and (4), can also be solved. However, the geometric conservation laws,
equation Equations (1) and (2), must be satis�ed in the numerical scheme in order to avoid
the existence of arti�cial source term as stated by Demird�zi�c et al. [3]. Before the numerical
procedure is presented, the calculation of transformation metrics is reviewed in the next sec-
tion so that the geometric conservation law can be satis�ed in terms of freestream capturing
metrics.

3. FREESTREAM CAPTURING METRICS

In this section, the transformation metrics Sj and the Jacobian J are approximated in terms
of �nite volume discretization. In structured grid, ��0; ��1 and ��2 represent the constant
step lengths of the unit computational domain. In the �nite volume context, the cell surface
area vector can be evaluated as Sj��m��n, where j �=m �= n, and the cell volume can be
calculated as J��0��1��2. Therefore, the surface area vector and the cell volume must be
evaluated so that the geometric conservation law can be satis�ed.
In order to simplify the notation of the equations, the following rules are applied hereafter:

• The subscript index (i0; i1; i2) is used to refer cell and the superscript n is used to refer
the time level.

• The surface has one half indexed, such as (i0 + 1
2 ; i

1; i2).
• The vertex is labelled as (i0 + 1

2 ; i
1 + 1

2 ; i
2 + 1

2).• The implied indexing scheme is applied, where the subscripts and superscripts take the
default values if they are missing in the expressions. For example, ui0+1=2 refers to
uni0+1=2; i1 ; i2 and xi0+1=2; i1+1=2; i2+1=2 is the co-ordinates of the vertex (i

0 + 1
2 ; i

1 + 1
2 ; i

2 + 1
2).

For the hexahedral cell in three-dimensional space, the surface is not unique since it has
four vertices and only three vertices’s are su�cient to de�ne a plane. Therefore, there are
various ways to approximate the cell surface by using the di�erent triangle divisions and
various formula can be derived consequently. Figure 1 shows a hexahedral cell of the grid.
In order to satisfy the surface conservation law as presented in Equation (1), the triangulation
presented below is applied. First, a surface centre point x

i j+12
is introduced by averaging of

co-ordinates of the four vertexes and the surface area vector is computed by summing the
area vectors of four triangles, which are constructed by connecting the central point to the
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Figure 1. Geometry of hexahedral cell.

four vertices. Therefore, the surface area vector can be computed as below:

Si j+1=2 =
1
2
(xim+1=2; in+1=2 − xim−1=2; in−1=2)|i j+1=2 × (xim−1=2; in+1=2 − xim+1=2; in−1=2)|i j+1=2 (5)

where m=( j+1)%3 and n=( j+2)%3. Similar formulas can be derived for other surfaces.
In fact, the surface area vector computed by using this triangulation is the average of surface
area vectors by using other possible triangulations. Actually, this equation is commonly used
in the �nite volume formulation and it can be easily veri�ed that this formula does satisfy
the surface conservation law (SCL) as shown in Equation (1).
Several formulae have been proposed for estimating the volume of hexahedral cell based

on di�erent approximations. However, the volume conservation law (VCL) as in Equation
(2) must be satis�ed. Figure 2 shows the positions of a hexahedral cell before and after its
movement.
Therefore, the VCL can be expressed as below:

�V =
∑

j=0;1;2
(dVij+1=2 − dVij−1=2) (6)

where the volume change of hexahedral cell, �V , must equal to the sum of the volumes
scanned by its surfaces during the movement, dVij±1=2.
The following equation was derived by using the concept of the equivalent plane:

V =
1
3
∑

j=0;1;2 (Si j−1=2)·(xi0+1=2; i1+1=2; i2+1=2 − xi0−1=2; i1−1=2; i2−1=2) (7)

Obayashi [6] applied this formula to calculate both the cell volume and the volume changes
and claimed that this formula satis�ed the VCL as stated in Equation (6). However, after
carefully examination, it is found that this formula fails to ensure the VCL exactly. The
author believes that the volume of hexahedral cell must be computed enough accurately in
order to guarantee the VCL. The following way of dividing hexahedral cell is used. Besides
the six surface centre points, a cell centre point xi0 ; i1 ; i2 is also introduced where its co-ordinates

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:53–78



58 H. PAN ET AL.

Figure 2. Hexahedral cell movement.

is average of the cell’s eight vertexes. Therefore, the hexahedral cell can be divided into 24
tetrahedrons by connecting the cell centre point to the vertexes and the surface centre points,
where each tetrahedron is constructed by using the cell centre point, a surface centre point
and two vertexes. This cell division is compatible with the surface division presented above.
Since the tetrahedron is the elementary shape in the three-dimensional space, the computed
volume of the hexahedral cell is unique and exact. After simpli�cation of the summation
of the volume of the 24 tetrahedrons, the following formula is obtained for computing the
volume of the hexahedral cell:

V =
1
6
∑

j=0;1;2
[(Si j+1=2 + Si j−1=2)·(xi j+1=2 − xi j−1=2)] (8)

It has been veri�ed that this formula guarantees the VCL exactly when both the cell volumes
and the volume changes are evaluated by using this formula. Its disadvantage may be that this
formula is more costly compared to Equation (7). However, considering the fact that all the
surface area vectors have to be computed in the numerical procedure, the cost for computing
the volume is not too high since the surface area vectors are already available. In the �rst
numerical test case, it is demonstrated that the freestream �ow can be captured by using this
formula to calculate the volume and volume change.

4. NUMERICAL PROCEDURE

Projection methods, originally developed by Chorin [16], are fractional step methods based
on the decomposition theory, which says that any vector V can be uniquely decomposed into
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a divergence-free component Vd and the gradient of a scalar �eld ∇�. In mapped grid, the
decomposition is de�ned in terms of the computational space, i.e.

V=Vd +
1
J

@
@�j (S

j�)

Therefore, the projection operator P can be de�ned such that Vd =PV and (1=J )@=@�j(Sj�)=
(I − P)V. The Godunov-projection method was proposed by Bell et al. [15], where the
Godunov procedure was applied in order to provide a robust discretization for the convection
term so that the cell Reynolds number restriction can be removed. This method is extended
in this paper to solve the ALE formulation of incompressible Navier–Stokes equations.
Using the projection operator de�ned above, the Navier–Stokes equations (3) and (4) can

be written in the equivalent form

ut =P
[
�
J
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J
Sk @u
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− 1

J
[Sj·(u − ub)] @u@�j + F
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(9)

and the pressure can be evaluated as the gradient component of the projected vector �eld, i.e.

1
J

@
@�j (S

jp)= (I − P)
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J
[Sj·(u − ub)] @u@�j + F

]
(10)

In this section, the temporal discretization is presented �rst followed by the spatial discretiza-
tion. Finally, the projection is brie�y introduced.

4.1. Temporal discretization

In the Godunov-projection method, the second-order Crank–Nicolson approximation is used:

un+1 − un
�t

=P

[(
�
2J

@
@�j

(
Sj· 1

J
Sk @u

@�k

))n+1=2

−
(
1
J
[Sj·(u − ub)] @u@�j

)n+1=2

+ Fn+1=2

]
(11)

However, the linear algebra problem associated with this equation could be extremely costly
because of the non-local behaviour of the projection. Bell gave an alternative where the frac-
tional step method is used. An intermediate velocity �eld is computed by solving the momen-
tum equation along with the currently available pressure �eld. Then the new divergence-free
velocity �eld is obtained by projecting the intermediate velocity �eld. There are two options
for computing the intermediate velocity �eld associated with two projection methods, the
incremental form and pressure form projection, respectively. According to Rider’s analysis
[17], the pressure form projection is more robust. Therefore, the intermediate velocity u∗ is
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computed by using following equations:[
1− ��t
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jp)
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(13)

The pressure �eld obtained from the previous time step is substituted here as the rough
approximation of the current pressure �eld since the current pressure �eld is still not available.
The reason to use Equation (13) is to put back the pressure gradient into the intermediate
velocity �eld so that the error resulting from previous time step is combined into the vector
�eld, which would be projected afterwards. Therefore, accumulation of numerical error can
be avoided. Once the intermediate velocity �eld is obtained, the projection can be performed
on the intermediate velocity to get the new �ow �eld

un+1 =P(u∗) (14)(
1
J

@
@�j (S

jp)
)n+1=2

=
1
�t
(I − P)u∗ (15)

After substituting u∗ in Equations (14) and (15), it can be found that the combination of
Equations (9) and (10) can be constructed. More detailed analysis regarding this fractional
scheme can be found in References [8, 10].
It should be pointed out this pressure form of projection is equivalent to the pressure

Poisson equation method as indicated by Rider [17]. The pressure Poisson equation is de�ned
by taking the divergence of the momentum equation and evoking the solenoidal condition.
Hirt [18] suggested a modi�cation to control the growth of error of pressure Poisson equation,
where the current velocity �eld is put back in the right-hand side. The pressure Poisson
equation obtained is as following:

@
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)

− 1
J
[Sj·(u − ub)] @u@�j + F
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(16)

In fact, the Possion equation associated with the pressure form of projection, ��=∇·(u∗=�t)
takes the same form as this equation. In conclusion, the pressure form of projection is
equivalent to the pressure Poisson equation. The boundary condition applied for this pres-
sure form of projection must be selected carefully. Gresho [19] gave excellent comments
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Figure 3. Extrapolated surface velocity.

regarding this issue. They recommended deriving the boundary condition from the normal
motion equation at the boundary. This idea is followed in the work to derive the boundary
condition at the moving wall boundary.

4.2. Convection discretization

The convection term used in Equation (12) is evaluated at the half time level in order to
make the scheme second-order accurate in time. Therefore, the velocity �eld at tn+1=2 must
be approximated. The extrapolation procedure used by Bell [15] is followed in this paper
to estimate the velocity �eld at half time level, where the velocity at the cell surface is
extrapolated. The MAC projection is performed to make sure the extrapolated velocity �eld
satis�es the continuity equation. It should be pointed out that the grid at the half time level
must be calculated since the grid is also time dependent. A simple assumption is made here
that every grid vertex moves with constant velocity during the time step from tn to tn+1.
Therefore, the middle grid can be easily obtained once the grid at next time level is generated.
The extrapolation procedure applied in this method is presented in detail.
Using the Taylor-series expansion, the surface-based velocity variables can be extrapolated

from cells at both sides of the surface as below:

uL; n+1=2i j+1=2 = u+
��j

2
@u
@�j +

�t
2

@u
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∣∣∣∣
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(
@u
@�j

)
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+
�t
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(
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∣∣∣∣
�

)
i j+1

(18)

Figure 3 shows the location of left and right surface velocity vectors. The time
derivative is replaced by using the momentum equation (4) and the following equations can
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be obtained:
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where �� refers to the Laplacian operator and ∇� the gradient operator in the computational
space. In these equations, the normal and transverse convection terms are separately expressed.
The pressure term in these equation should be removed. According to Bell et al. [20], the
usage of lagged pressure term would introduce a non-linear instability when the CFL number
is larger than 0.5. Therefore, the pressure term is suppressed in the following equations and
the MAC projection is performed instead to recover the extrapolated solenoidal velocity �eld,
which is introduced later in this section.
Colella [21] developed multi-dimensional upwind approximation where the normal and

transverse derivative terms are di�erentiated separately in order to correctly capture the dis-
continuity in the multi-dimensional space. The extrapolation of surface velocities as shown
in Equations (19) and (20) is accomplished in a series of steps. The approximation of the
space derivative @u=@�j, denoted as ��ju, can be computed by using various limiters, such
as minmod and super-bee limiters, etc. We choose the following limiter:

Q(r)= max
[
0;min

(
2; 2r;

1 + r
2

)]
(21)

where r is the ratio between the left di�erence �L = u−ui j−1 and right di�erence �R = ui j+1−u,
i.e. r= �L=�R. Therefore, ��ju=Q(r)�R. The grid velocity in the convection velocity is
combined into the volume change of the cell in the �j direction, �V j. After the normal
convection is approximated in an upwind fashion, the surface velocity extrapolated from
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both sides can be estimated as below:
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where 	uj=Sj·u. The volume change �V j is evaluated by averaging the volumes scanned
by the surface Sj

i j+1=2 and S
j
i j−1=2, respectively, i.e. �V j=1=2(�V j

ij+1=2 +�V j
ij−1=2). Here the

scanned volume is computed by using the proposed formula (8) presented in last section.
�̂�ku represents the transverse convection derivative, which is approximated by using the
following upwind scheme:

�̂�ku= u − uik−1 +
[
��k

2
− 1

J

(
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	uk −�V k

)]
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)
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The Laplacian derivative term can be evaluated using a standard scheme. After the extrap-
olation, the ambiguities of the surface velocity are solved by using an upwind averaging
procedure based on the Roe’s Riemann solver. From now on, we suppress the superscript
n+ 1

2 in the favour of using simple equations. First the advection velocity is computed:

ũadvi j+1=2 =
1
2 [ũ

L
i j+1=2 + ũRi j+1=2 − sign(ũj

avg)(ũ
R
i j+1=2 − ũLi j+1=2)] (26)
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where

ũLi j+1=2 =
�t
2
(Sj·ûL)i j+1=2 −�V j

ij+1=2

ũRlj+1=2 =
�t
2
(Sj·ûR)i j+1=2 −�V j

ij+1=2

and ũj
avg = 1

2(ũ
L
lj+1=2 + ũRlj+1=2). Then, the value of the surface velocity is evaluated in favour

of the upwind direction:

ûi j+1=2 = 1
2 [û

L
i j+1=2 + û

R
i j+1=2 − sign(ũadvi j+1=2)(û

R
i j+1=2 − ûLi j+1=2)]

Since the pressure term is missing in the extrapolation, the surface velocity �eld obtained
so far is not divergence free. The MAC projection is performed on this �eld to recover the
solenoidal velocity �eld

ui j+1=2 =PMAC(ûi j+1=2)

Finally, the convection term in Equation (12) is calculated by using the di�erence scheme
as follows:

�t
(
1
J
[Sj·(u − ub)] @u@�j

)
=
1
J
∑
j

[
ũadv

(
ui j+1=2 − ui j−1=2

��j

)]
(27)

where the advection velocity takes the value of the average of advection velocities on both
j ± 1=2 surface of the cell, i.e.

ũadv = 1=2(ũadvi j+1=2 + ũadvi j−1=2)

and the advection velocity on the ij + 1=2 surface is computed:

ũadvi j+1=2 =�t(Sj·u)i j+1=2 −�Vij+1=2

where the volume change �Vij+1=2 is between the current grid position and the grid at the
next time level.
The time step of this second-order Godunov method is restricted by the CFL condition for

the sake of stability. The criteria for the time step is

max
i0 ; i1 ; i2

(
�tSj·u −�Vij

J

)
6CFL (28)

4.3. Projection

The exact projection method uncouples the grid and deteriorates the solution where volumetric
sources exist as outlined in Reference [9]. Additionally, the local decoupling renders the
implementation of e�cient linear algebra techniques cumbersome as presented in Reference
[12]. In order to overcome these problems, approximate projection proposed by Almgren
[12, 22] using a standard stencil for discretizing the Laplacian operator is used. Rider [17]
showed that the dimension of null space of the standard discrete Laplacian operator is only
one instead of four for the discrete operator of the exact projection in two-dimensional space.
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Plate 1. Shear stress on the lower and upper walls at various instants of time, t∗=0:1–1:0:
(a) stress on the lower wall; and (b) stress on the upper wall.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45(1)



2 3 4 5 6 7
x

0

0.5

1

1.5

2

y

2 3 4 5 6 7
x

2 3 4 5 6 7
x

2 3 4 5 6 7
x

2 3 4 5 6 7
x

2 3 4 5 6 7
x

2 3 4 5 6 7
x

2 3 4 5 6 7
x

0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

y
0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

y

Plate 2. Pressure contour plots at di�erent instants of time for the �ow inside deforming tube: (a) �at
wall moving inward; (b) partly pinched wall moving inward; (c) fully pinched wall moving outward;
(d) partly pinched wall moving outward; (e) �at wall moving outward; (f) partly bulged wall moving

outward; (g) fully bulged wall moving inward; and (h) partly bulged wall moving inward.
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Plate 3. Vorticity contour plots at di�erent instants of time for the �ow inside deforming tube: (a) �at
wall moving inward; (b) partly pinched wall moving inward; (c) fully pinched wall moving outward;
(d) partly pinched wall moving outward; (e) �at wall moving outward; (f) partly bulged wall moving

outward; (g) fully bulged wall moving inward; and (h) partly bulged wall moving inward.
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Hence, the grid is coupled this way and the discrete divergence is a function of truncation
error. Denoting the approximate projection as P̃, it should be pointed out that the approximate
projection is not idempotent, i.e. P̃2 �= P̃. The Poisson equation associated with the projection
is given by

L =D
(
u∗

�t

)
(29)

where L is the discrete Laplacian operator and D denotes the discrete divergence operator.
Here the intermediate velocity u∗ is projected directly since the pressure form of projection
is more robust according to Rider’s analysis [17]. Appropriate boundary conditions should by
applied. Gresho [19] gave excellent comments regarding this issue. Here the normal motion
equation at the moving wall boundary is used as the boundary condition. Once the linear
system of equations is solved, the velocity and the gradient of pressure term can be determined
as follows:

un+1 = u∗ −�tG( ) (30)

1
J

@
@�j (S

jp)n+1=2 =G( ) (31)

where G is the discrete gradient operator. Both the velocity and the pressure �eld are updated.

5. PARALLEL STRATEGY

In order to overcome the computational overhead of unsteady three-dimensional numerical
�ow simulations, the algorithm presented above is parallelized on multi-block structured grids.
Generally, the parallelization is accomplished by partitioning the computational grid and dis-
tributing the grid partitions between the processors. Special consideration must be paid to
the load balancing and the parallel e�ciency in terms of the ratio of time cost between the
computation and communication.
In this work, the partition is achieved by partitioning the multi-block grids to ensure good

load balancing. Each block grid is partitioned into a number of parts and distributed between
the processors. Therefore, each processor has a collection of grid partitions which belong to
di�erent block grids. Each block grid is partitioned in a scalable manner where the grid is
divided as equally as possible and the interface between grid partitions is minimized so that
the amount of data exchanged during the computation is minimized as well and the e�ciency
of the parallel algorithm can be enhanced. In this work, a boxwise partition is employed to
partition the block grid where the component grid can be divided in all three co-ordinate
directions and the number of the grid partitions is equal to the number of the employed
processors.
In order to make the produced parallel code portable, the message passing standard, MPI

[23], has been used to implement the communication in the parallel numerical algorithm so
that any platform supporting MPI can be used to do the calculation. The master/slave model
shown in Figure 4 has been used as the model for implementing the algorithm in parallel by
exploiting the scalable parallel computer architecture of the SGI Origin 2000 HPC Platform,
where one processor (master) controls the execution of the overall computation including I=O
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slaveslave

slave

master

slaves ...

Figure 4. Structure of master/slave program model.

and other processors (slaves) execute the �ow computation on their partitioned computational
domain simultaneously. Basically, the slaves run in a loop awaiting the commands sent by the
master. Upon completion of the job, the slaves signal the master so that subsequent actions
can be initiated by the master. The slave is also allowed to communicate with other slaves
directly under the supervision of the master so that unnecessary message passing is eliminated.
The synchronization of processes is ful�lled by using blocked message sending and receiving
of MPI.

6. NUMERICAL RESULTS

A parallel �ow solver based on the algorithm presented above has been developed. Several
test cases are solved to show its applicability. Although the cases presented here are all two-
dimensional problems, the �ow solver is three dimensional, where the symmetric boundary
condition is applied on both boundaries of the third co-ordinate. The freestream on the moving
domain is calculated by using this method to verify whether the GCL is satis�ed in this
method. The metrics formula presented in Section 3 is applied here. A benchmark problem,
the �ow inside a channel with moving indentation, which had be studied experimentally and
numerically by other researchers, is solved here to examine the performance of this projection
method. The �ow inside a tube, which has an oscillating wall, is also simulated to demonstrate
the performance of this method for solving cases with large Strouhal number.

6.1. Freestream capturing

The freestream on a moving domain is simulated here by using the method described in this
paper. The purpose is to examine whether the GCL is satis�ed exactly. If so, the freestream
�ow remain unchanged after the domain changes. Otherwise, the pseudosource exists and the
�ow �eld is deteriorated. The initial and �nal physical domains are shown in Figure 5(a)
and 5(b), which are a rectangle and rhombus, respectively. The uniform grids used in this
case are also shown in these �gures. The in�ow boundary condition is speci�ed on all the
boundaries of the domain, where the velocity of the freestream is speci�ed as u∞=(1; 0; 0),
where only u component has value and v and w are zero. Therefore, the value of v and w of
the velocity �eld on the rhombus domain can be easily identi�ed as error. Since the �ow �eld
should have no change, there is no limit on the time step. Several test cases are calculated,
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Figure 5. Domains and vector plots for freestream capturing: (a) initial domains; (b) �nal domain;
(c) initial �ow vector; and (d) �nal �ow vector.

where the domain completes the change in either one time step or a series of time steps.
Flows at di�erent Reynolds number are also simulated. For all calculations, similar results are
obtained, which are displayed in Figures 5(c) and (d) showing the initial and �nal velocity
�eld. The velocity vectors show no change except the origin positions are changed due to
the change of the grid points. The errors for all �ow variables, u, v, w and p are very small
(approximately 1:0e − 8), which can be considered as the truncation error of �oating-point
numbers expressed in the computer. Therefore, it can be concluded that the freestream �ow
on the moving domain can be accurately captured and there is no pseudosource, which would
occur once the GCL is violated in the numerical procedure.

6.2. Flow inside a channel with a moving indentation

The �ow inside a channel with a moving indentation is simulated here to verify the projection
method presented in this paper. This problem had been studied experimentally by Pedley [24]
and numerically by Ralph [25] and Demird�zi�c [5]. The geometry of the �ow domain is shown
in Figure 6 and the indentation is de�ned by using an analytic function, which was presented
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Figure 6. Geometry of the channel with moving indentation.

in Reference [5]:

y(x)=

{ 1
2 h(1− tanh[a(x − x2)]) for 06x¡x3

y(−x) for x¡0
(32)

where a=4:14; x1 = 4b; x3 = 6:5b and x2 = 1=2(x1+x3). Here b represents the channel height.
The height of the indentation is the function of time:

h=0:5hmax[1− cos(2�t∗)]
where t∗=(t − t0)=T . t0 is the starting time and T is the period of the moving indentation.
hmax =0:38b is the maximum height of the indentation. In summary, all parameters speci�ed
here take the same values as in Reference [5].
The grids used in this calculation have 221× 41× 4 grid points, which is similar to the �ne

grids used in Reference [5], and the grid points are clustered around the downstream connec-
tion part between the indentation and the channel. At each time step, the grid is regenerated
by using an elliptic grid generator, which is based on the algorithm presented by Spekreijse
and Boerstoel [26]. Figure 7 shows the grids when no indentation exists and the indentation
reaches its maximum height. The uniform step length is used in the z direction, where the z
co-ordinate is between −1:0 and 1:0.
The same Strouhal number and Reynolds number are used in this calculation, where

St=0:037 and Re=507. The in�ow velocity is speci�ed by a parabolic distribution, where v
and w is zero and the mean value of u is 1.0. The computed results at di�erent instants of time
are shown in Figures 8–17, where the vector, the pressure contour and the streamline plots
are presented at t∗=0:1; 0:2; : : : ; 1:0 respectively. The �ow �eld at the plane where z=0:0 is
used in these plots. Only the section behind the indentation is presented since the vortices
are produced in this part and the �ow ahead the indentation is not much a�ected by the
movement of the indentation. The vector plots are drawn by using the same reference vector
so that the velocity magnitude at the di�erent instants of time can be visually compared.
The �ow rate is higher than the inlet rate when t∗¡0:5 since the indentation rises and

more �uid is driven away. This can be observed in Figures 8–12. The �rst vortex behind
the indentation is produced at t∗=0:3 and then increases its range as the indentation keeps
rising. At t∗=0:4, the �rst upper wall vortex is also induced, which in turn induces the
second lower wall vortex at t∗=0:5. After t∗¿0:5, the �ow rate is less than the inlet rate
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(a)

(b)

Figure 7. Section of the grids at: (a) t∗=0; and (b) t∗=0:5.

Figure 8. Flow with moving indentation at t∗=0:1.

Figure 9. Flow with moving indentation at t∗=0:2.
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Figure 10. Flow with moving indentation at t∗=0:3.

Figure 11. Flow with moving indentation at t∗=0:4.

Figure 12. Flow with moving indentation at t∗=0:5.

since the indentation is retracting and part of the oncoming �uid is used to �ll the gap. More
vortices are developed, where the second upper wall vortex appears and the �rst upper vortex
is stretched as shown in Figure 13. The two lower wall vortices are also enhanced. A few
more vortices are induced afterwords. As the lower wall further retracts, these vortices are
shifted downstream and become weaker as shown in Figures 14–16. At t∗=1:0, only slightly
wavy streamlines remain since the �ow channel is now �at. After one cycle, the pressure
distribution was also recovered from the very complex structure at t∗=0:8 to the nearly
uniform distribution as shown in Figure 17.
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Figure 13. Flow with moving indentation at t∗=0:6.

Figure 14. Flow with moving indentation at t∗=0:7.

Figure 15. Flow with moving indentation at t∗=0:8.

Demird�zi�c [5] also presented the vector, pressure contour and streamline plots at the same
instants of times except t∗=0:1. After comparison, we concluded that the results we obtained
are very similar with Demird�zi�c’s results. The shear stress on the lower and upper wall at
these same instants of time are also presented in Plate 1. These �gures indicate the strength
of the eddies and the position of the separation and reattachment. After comparison of these
shear stress distribution with Demird�zi�c’s results, it can be concluded that similar solutions
are obtained in this calculation by using the proposed projection method.
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Figure 16. Flow with moving indentation at t∗=0:9.

Figure 17. Flow with moving indentation at t∗=1:0.

The performance of the three-dimensional parallel code was studied on the Origin 2000
mainframe computer using this case. The speed-up and the e�ciency are shown in Figure 18.
A reasonable speed-up and e�ciency are achieved. When using 8 processors, the speed-up can
reach 5.45. However, the e�ciency is not very high, only 0.682 for 8 processors. The main
reason is that the elliptic grid generation code is a sequential code, which is executed only
on the master process and all slave processes are idle in this duration. It can be expected that
the parallel performance of the algorithm can be improved greatly once the grid generation
code is also parallelized.

6.3. Flow inside deforming tube

The Strouhal number used in the Demird�zi�c case is small, only 0.037, which means the
indentation moves relatively slow. In this case, the �ow inside a deforming tube, which has
a rapidly oscillating wall, is simulated here to demonstrate the applicability of the proposed
projection method for large Strouhal number.
Figure 19 shows the con�guration of this �ow. The lower wall of the tube is �at and �xed

and its upper wall oscillates according to the function

y(x; t)=y0
[
1− am sin

(�
2
t
)
exp(−4(x − Xc)2)

]
(33)
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Figure 19. Con�guration of �ow inside moving tube.
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where y0 is the height of tube and am is the magnitude of the oscillation. Xc is the location of
extrema for the Gaussian movement. The tube wall is initially �at and then it moves inward to
fully pinched position at t=1 and back out through the �at position at t=2 to a fully bulged
position at t=3 and �at again at t=4. Maximum wall speeds occur at the �at position. The
parabolic distribution of velocity is speci�ed at the inlet, where its mean velocity is 1.0. In
this case, the following parameters are used:

y0 = 1; am=0:5; Xc=3; Xd=12

Therefore, the Strouhal number for this case is 0.25. The Reynolds number is set to 200,
which is based on the mean in�ow velocity and the tube height. The tube upper wall is
assumed to be a �exible so that the tangent velocity is set to zero always.
The grid points are clustered along the tube wall and the hump at x=Xc. The elliptic

grid generation code is used to generate the grid at each time step. The grid dimensions are
121× 31× 4, where the uniform step is used on the z direction. The symmetrical boundary
condition is applied on both z boundaries. The sections of the grids at three di�erent instants
of time are displayed in Figure 20, where the tube wall is �at, fully pinched and fully bulged.
The �ow �elds computed at various instants of time are shown in Figure 21 and Plates 2

and 3, which consists of a period of the tube wall oscillation. Figure 21 show the velocity
vector plots, the pressure contour plots and vorticity contour plots, respectively, at the di�erent
instants of time when the tube wall is at �at position with inward movement as shown
in (a), partly pinched position with inward movement in (b), fully pinched position with
outward movement in (c), partly pinched position with outward movement in (d), �at position
with outward movement in (e), partly bulged position with outward movement in (f), fully
bulged position with inward movement in (g) and partly bulged position with inward move-
ment in (h).
When the upper wall protrudes inward from its �at position, the velocity behind the hump

is larger than the in�ow velocity since the volume of the tube is being reduced and more
�uid is driven out by the movement of the tube wall. As the slope of the hump increases,
the �ow behind the hump begins to separate and the vortex is formed in the wake of the
hump as shown in Figure 21(b). The vortex is enhanced until the upper wall is fully pinched
as presented in Figure 21(c). The vortex is pushed away from the upper wall in this process
because of the fact that the upper wall moves inwards. In Figure 21(c), it also can be found
that there is a vortex near the lower wall behind the opposite location of the hump, which is
induced by the upper wall vortex. Plate 3(c) clearly shows the lower wall vortex.
After the fully pinched position is reached, the upper wall begins to move outwards until

it reaches the fully bulged position. An interesting phenomenon observed is that the upper
wall vortex is kept at its position instead of being �ushed away. Figures 21(d)–(f) and
Plate 3(d)–(f) illustrate this phenomenon. Plate 2(c)–2(e) shows that the pressure gradient is
reversed as long as the upper wall begins to move outwards. The out�ow velocity is reduced
and part of the incoming �uid is used to �ll up the increasing tube volume. The lower wall
vortex is enhanced under the reversed pressure gradient. It also raises by the sucking of the
upper wall. The second upper wall vortex is developed behind the hump under the reversed
pressure gradient, which further reduces the out�ow rate to match the requirement of �ow
rate to �ll the expanding tube volume.
Figure 21(g) and Plate 3(g) show the �ow �eld where the full protrusion is reached. At

this moment, the upper wall begins to move inwards and the tube volume starts to shrink.
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Figure 20. Grid sections at three di�erent instants of time: (a) �at wall;
(b) fully pinched wall; and (c) fully bulged wall.

Accumulated �uid during the bulging process is driven out and the out�ow velocity is larger
than the in�ow velocity. The positive pressure gradient is recovered as shown in Plate 2(g).
As a consequence, the vortices are weakened and are �ushed out of tube as shown in Figure
21(h) and 21(a). It can be seen in these �gures that there is a vortex inside the protrusion just
behind the �rst curve and it disappears quickly as the curvature of the protrusion is reducing
and the pressure gradient is positive.
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Figure 21. Vector plots at di�erent instants of time for the �ow inside deforming tube: (a) �at wall
moving inward; (b) partly pinched wall moving inward; (c) fully pinched wall moving outward; (d)
partly pinched wall moving outward; (e) �at wall moving outward; (f) partly bulged wall moving

outward; (g) fully bulged wall moving inward; and (h) partly bulged wall moving inward.

In summary, the �ow �eld computed by using the proposed projection method is reasonable
and interesting results are obtained for the �ow inside the fast deforming tube.

7. CONCLUSIONS

In this paper, a projection method is presented to solve the unsteady incompressible Navier–
Stokes equations on the ALE co-ordinate system so that �ow problems with moving bound-
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aries can be solved accurately. This projection method is based on the Godunov-projection
(BCG) method proposed by Bell [15]. Substantial changes are made to solve the Navier–
Stokes equations on the ALE co-ordinates and to let the geometrical conservation law be
satis�ed. The freestream capturing metrics for general three-dimensional structured grids are
reviewed and a new formula is proposed to exactly compute the volume of a hexahedral cell.
It is also veri�ed that the new formula does guarantee the GCL in this projection method.
The numerical algorithm is also parallelized based on the grid partitioning. Several numeri-
cal test cases are used to demonstrate the applicability of this projection method for solving
the moving boundary problems, where large and rapid domain deformation exists. It can be
concluded that this method is capable of solving the ALE formulation of unsteady incompress-
ible Navier–Stokes equations. The parallel performance of this algorithm is also presented and
reasonable speedup and e�ciency are achieved.
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